24 Visitas |
0 Candidatos |
Descripción del puesto:
Description du poste
Domaine
Mathématiques, information scientifique, logiciel
Contrat
Stage
Intitulé de l'offre
Développement d'un framework fédéré FHE pour l'exploitation de données santé. H/F
Sujet de stage
Le chiffrement homomorphe permet d'effectuer des opérations dans le domaine chiffré, sans avoir accès à la clé de déchiffrement offrant une protection globale de la chaine de traitement. Le LIST / DSCIN(DRT) dispose aujourd'hui d'une expertise et des solutions sécurisées adaptées aux traitements avancés sur les données et leur interprétation. Les développements récents effectués au LCYL
permettent notamment d'envisager de l'apprentissage fédéré protégé par chiffrement homomorphe. L'objectif de ce stage est d'améliorer le framework d'apprentissage fédéré en homomorphe avec des nouvelles fonctionnalités (support de la librairie homomorphe openFHE, support multi-utilisateurs, application des règles d'aggrégation plus robustes, etc.) et de l'appliquer pour l'exploitation des données génomiques.
Durée du contrat (en mois)
[4 à 6 mois]
Description de l'offre
Offre:
Au-delà de la réglementation, l'externalisation de données sensibles (données secrètes et données souveraines) en dehors du site industriel ou hébergeur certifié, afin d'y faire des traitements ou analyses dans des infrastructures de calcul externe (type Cloud), est encore freinée en raison de l'absence de solutions garantissant la confidentialité de ces données. Les données de santé dont la génomique se positionnent aujourd'hui parmi les disciplines les plus impactées par ses contraintes d'exploitation de l'information. Si le développement de la médecine génomique du futur se trouve aujourd'hui ralenti et limité par ces contraintes, elle s'installe cependant progressivement dans le parcours du soin du patient. De nombreuses études en apprentissage automatique ont notamment émergé pour traiter la complexité des données omiques et démontrer l'intérêt de leur intégration dans la caractérisation et la classification détaillée des pathologies tumorales. Les enjeux scientifiques sont multiples. La découverte de biomarqueurs robustes pour la classification du cancer en s'appuyant sur des données issues de différentes modalités expérimentales complémentaires est un enjeu clé. Aujourd'hui le partage de l'information conditionne le développement de modèle performant basé sur une représentation exhaustive de la population.
Dans ce contexte de partage et de protection de l'information le chiffrement est aujourd'hui un axe envisagé pour la protection des données de santé. Le chiffrement homomorphe permet notamment d'effectuer des opérations dans le domaine chiffré, sans avoir accès à la clé de déchiffrement. DSCIN/LCYL dispose aujourd'hui d'une expertise et des solutions sécurisées adaptées aux traitements avancés sur les données et leur interprétation. Les développements récents du DSCIN permettent notamment d'envisager l'installation de modèle d'apprentissage fédéré protégé par chiffrement homomorphe.
Le LIST/DSCIN en partenariat avec le Centre National de Recherche en Génomique Humaine (CNRGH/CEA) ont entamé le développement d'un framework fédéré dédié à l'exploitation de données de santé appliqué à la génomique.
Le LIST/DSCIN recherche un étudiant de Master 2 ou équivalent pour un stage de recherche d'une durée de 5 à 6 mois afin de réaliser l'implémentation de libraires au sein d'un framework dédié à l'apprentissage fédéré protégé par chiffrement homomorphe. Ces travaux couvriront notamment l'intégration de la bibliothèque openFHE appliqué aux transferts de paramètres et à leur agrégation au travers de différentes stratégies. Ces développements seront accompagnés d'une étude de l'impact sur les performances de différents modèles et de leur frugalité. Dans un second temps, en accord avec la dynamique du stage, le candidat travaillera également sur l'implémentation d'un contrôle multi-clé au sein du framework et pourra aborder les problématiques associés à la gestion d'un système de confidentialité différentielle.
Moyens / Méthodes / Logiciels
C/C++; Python, Kubernetes, Docker
Profil du candidat
Niveau Master M2 ou équivalent / Formation Informatique/Mathématique - Cryptographie
Localisation du poste
Site
Saclay
Localisation du poste
France, Ile-de-France, Essonne (91)
Ville
Palaiseau
Critères candidat
Langues
Anglais (Courant)
Diplôme préparé
Bac+5 - Master 2
Formation recommandée
Cryptographie, Intelligence Artificielle, Ecole d'ingénieur
Possibilité de poursuite en thèse
Oui
Demandeur
Disponibilité du poste
01/03/2025
Origen: | Web de la compañía |
Publicado: | 26 Sep 2024 (comprobado el 21 Ene 2025) |
Tipo de oferta: | Prácticas |
Sector: | Gobierno / ONGs |
Duración: | 5 meses |
Idiomas: | Francés |
Empresas |
Ofertas |
Países |